Real-time searches for neutrino counterparts of gravitational waves with IceCube

Justin Vandenbroucke (University of Wisconsin) for the IceCube Collaboration LIGO-Virgo-KAGRA Town Hall, February 16, 2023

The IceCube Neutrino Observatory

Justin Vandenbroucke

Astrophysical neutrinos in a nutshell

(1) discovery of a bright extragalactic neutrino signal, mostly unresolved

(3) evidence for neutrinos from Seyfert NGC 1068 (M77)

(2) evidence for neutrinos from blazar TXS 0506+056

Justin Vandenbroucke

Why search for neutrino counterparts of GW events in real time?

- Models predict particle acceleration (likely involving hadrons at some level) by mergers involving a neutron star (BNS or NSBH)
- Even for BBH, neutrino emission can occur if embedded in sufficient medium, e.g. in models where BBH occur preferentially within accretion disks of SMBH
- Neutrino localization area is ~500 times smaller than GW sky localization
- Publishing candidate neutrino coincidences with low latency enables observers to search the neutrino localization area, to identify a counterpart and confirm the neutrino coincidence is a signal

Real-time follow-up of O3 open public alerts

Two analyses each search +/- 500 s around merger time

- Low-Latency Algorithm for Multi-messenger Astrophysics (LLAMA): Bayesian
- Un-binned Maximum Likelihood (UML): frequentist

IceCube, ApJ Letters 898 (2020) L10 IceCube, ApJ 944:80 (2023)

An example GW analyzed in real time during O3

Justin Vandenbroucke

We follow up each sky map revision (preliminary, initial, update, ...)

Same example (GW 190728_064510)

Justin Vandenbroucke

Archival analysis through GWTC-3: 91 GWs (O1, O2, O3)

Justin Vandenbroucke

Archival analysis through GWTC-3: 91 GWs (01, 02, 03)

91 GWs from O1, O2, and O3

Comparison of bolometric isotropic-equivalent energy in GW, gamma rays, and neutrino upper limits

Justin Vandenbroucke

O4 plans and outlook

- We plan to follow up each LVK open public alert (including BBH) and report results from both pipelines (LLAMA and UML) with low latency (<1 hour)
- Will analyze low-significance (sub-threshold) as well as high-significance GW
- Automated publication without human in the loop (human cross checks may result in revisions)
 - p-value > 0.1: automated GCN Notice with upper limits
 - 0.01 < p-value < 0.1: automated GCN Notice with coincident neutrino information
 - p-value < 0.01: automated GCN Notice and human GCN Circular with coincident neutrino information
- +/-500 second search window for all GW; two-week search window for GW with neutron star
- Planning to use GCN over Kafka
- Considering also publishing via SCiMMA
- We encourage other observers to follow up our coincident neutrino alerts!
- Any additional or different information other observers would like?

Additional slides

Justin Vandenbroucke

Preliminary IceCube-GW GCN Notice format

Shaded: included if p<0.1

Parameter	Description	Comment
TITLE	GCN NOTICE	
NOTICE_DATE	[date]	UTC
NOTICE_TYPE	IceCube_GW_Coinc	notice type name
STREAM	##	standard
GW_EVENT_NAME	[lvk_name]	From LVK, GW event followed up
GW_GCN_NOTICE_NUM	[notice_id]	notice id from GW detectors
T_MERGER	[trigger_time]	UTC
T_START	[tstart]	UTC; start time of the search (trigger -500s)
T_STOP	[tstop]	UTC; stop time of the search (trigger +500s)
N_EVENTS_COINC	[num_events]	number of IceCube events in spatial and temporal coincidence with the GW map
OVERALL_P_GEN_TRANSIENT	[pval_uml]	overall p-value for UML followup
OVERALL_P_BAYESIAN	[pval_llama]	overall p-value for LLAMA followup
OVERALL_SIG_GEN_TRANSIENT	[sig_uml]	significance for UML followup
OVERALL_SIG_BAYESIAN	[sig_bayesian]	significance for LLAMA followup
COINC_EVENT_DT	[dt]	time offset (sec) of 1st coincident neutrino with respect to GW trigger
COINC_EVENT_RA	[ra]	RA of 1st coincident neutrino (deg)
COINC_EVENT_DEC	[dec]	declination of 1st coincident neutrino (deg)
COINC_EVENT_ANG_UNC	[ang_unc]	angular uncertainty of track event: 90% containment (deg)
COINC_EVENT_P_GEN_TRANSIENT	[pval_uml]	event p-value for 1st coincident neutrino with UML
COINC_EVENT_P_BAYESIAN	[pval_llama]	event p-value for 1st coincident neutrino with LLAMA
		Lowest value of point source sensitivity assuming an E^-2 spectrum (E^2 dN/dE)
SENS_LOW	[lowSens]	within the GW map localization (GeV cm^-2)
		Highest value of point source sensitivity assuming an E^-2 spectrum (E^2 dN/dE)
SENS_HIGH	[highSens]	within the GW map localization (GeV cm^-2)
	2 searches for track-l	like muon neutrino events detected by IceCube consistent with the GW localization
COMMENTS	in a time window of 1000s	
COMMENTS	(1) generic transient search with unbinned maximum likelihood	
	(2) Bayesian approac	h assuming a binary merger scenario and accounting for priors such as GW source
	distance	
COMMENTS	M. G. Aartsen et al 2020 ApJL 898 L10 ; Abbasi et al. arXiv:2208.09532 (2022)	
COMMENTS	The position error is statistical only, there is no systematic added.	

